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ABSTRACT 

Objectives: The increasing incidence of dengue fever has become a priority health issue for Sri Lanka. Recent dengue outbreaks in Sri 
Lanka show two trends: yearly increase of total number of dengue incidence and increasing dengue outbreaks outside the endemic 
urbanised areas in the south and the west. Identification of factors responsible for dengue outbreaks and the mapping of potential risk 
areas in Sri Lanka are long overdue. This study examines the association between weekly rainfall patterns and dengue outbreaks in the 
western province between 2000 and 2004. Methods: The study develops a model to quantitatively assess the relationship between rainfall 
and dengue outbreaks and then evaluate the suitability of the model for predicting dengue outbreaks. A power regression model was 
constructed using rainfall and dengue incidence data. The Inverse Distance Weighted (IDW) interpolator and Geographic Information 
System (GIS) techniques were used in mapping the spatial distribution of dengue risk surfaces. Results: The results show that there is a 
strong correlation between dengue outbreaks and rainfall for majority of the towns studied. An error analysis was conducted to assess the 
validity of the model comparing model outputs and actual outbreaks. The analysis shows that the error component for selected cases is 
within a single outbreak. Conclusions: The ability to predict dengue outbreaks and mapping the spatial patterns facilitates dengue 
surveillance and monitoring. 
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INTRODUCTION 
 

The control of vector-borne diseases presents a major 
challenge to global health officials. According to the World 
Health Organization, every year hundreds of millions people 
suffer from malaria, dengue fever, yellow fever and Japanese 
encephalitis (WHO, 2005). Geographically, the majority of these 
diseases have been closely associated with tropical and 
subtropical climatic regions (Khasnis and Nettleman, 2005). 
Global warming may expand the areas suitable for mosquito 
habitats thus, increasing the number of dengue transmissions. 
This predicted increase is the most pronounced at the borders 
of the endemic areas and at higher altitudes (CDC, 2005). 
During the recent years, a significant rise in the number of 
dengue cases were reported in some geographic regions 
(outbreak), particularly in tropical Africa, Central America and 
Asia. Expansion within the countries as well as new dengue 
outbreaks in other parts of the world have been receiving 
considerable attention by international bodies (Tabachnick and 
Powell,1979; CDC, 2005) as well as  in epidemiological 
research fields (Canyon, 2001; Martens, 1998). In addition to 
climatic factors,  it is apparent now with the changes of other 
global drivers such as pollution, land use patterns, urbanization 
and human mobility, the vector-borne diseases, (e.g., dengue) 
are spreading outside humid tropical and sub-tropical urban 
centres where dengue was commonly found (Hay et al., 2002; 
Jacobs et al., 2005; Sutherst, 2004). According to the WHO, 
some 2500 million people are now at risk of dengue which is 
about 2/5 of world population (WHO, 2002). Unfortunately, 
there is no vaccine currently available to prevent dengue 
infection. However, pain relievers such as paracetamol and 

anti-nausea medications are commonly being used with 
patients.  
In recent years, investigation of vector-borne disease has 
received increased interest together with new concern about 
climate change and the availability of a variety of research 
tools.  Spatial information techniques such as Geographic 
Information Systems (GIS), remote sensing and spatial 
statistics not only allow researchers to identify and model these 
disease patterns but also to help examine the association 
between climate, climate variability and vector-borne diseases. 
(Alto and Juliano, 2001; Kolivras, 2006; Napier, 2003). 
However, applications of these techniques to study dengue are 
still limited to few studies and geographically limited to Africa or 
Central and South America. 

Since the end of last decade, dengue has been a serious threat 
to public health authorities in Sri Lanka. There were two 
important trends related to dengue outbreaks in Sri Lanka: the 
total number of reported dengue cases was significantly 
increased, and dengue started to appear in the districts outside 
the western province. In response to public and political 
concern, a dengue task force has been established and a 
several control strategies were identified (Kulatilaka and 
Jayakuru, 1998). One of the tasks has been the use of modern 
spatial information technologies such as Geographical 
Information Systems and remote sensing to improve the 
monitoring and surveillance, understanding the control factors 
and explore potentials of predicting disease outbreaks (Weekly 
Reports, Epidemiological Unit, 2005).  This study examines the 
weekly rainfall patterns and dengue outbreaks in the western 
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province of Sri Lanka between 2000 and 2004. Specifically, this 
research attempts to answer three questions:  

• What is the association between rainfall variability 
and dengue outbreaks in the western province of Sri 
Lanka?   

• How do we model the association between spatial 
and temporal patterns of rainfall and dengue to 
predict the outbreaks? 

• What are the potential risk areas for dengue 
outbreaks? 

The model developed in this study quantitatively assesses the 
relationship between rainfall and dengue outbreaks and then 
evaluate the suitability of the model for predicting dengue 
outbreaks incorporating GIS and spatial statistical techniques. 
Understanding the patterns of current and potential dengue 
transmissions will assist monitoring the disease and 
surveillance efforts by the relevant authorities. 

BACKGROUND  

The dengue mosquito’s habitats vary according to man’s 
habitats (Harrison et al., 1972; Kay et al., 1995; Kemp and 
Jupp, 1991; Strickman and Kittayapong, 2002). Urban areas 
appeared to be favourable for mosquitoes with a abundance 
supply of plastic water containers, discarded bottles, tins, tyres, 
water coolers, house plants, air conditioners, used tyres and 
places where rain-water collects or stored (Biswas et al., 1993) 
providing ideal breeding grounds for mosquitoes. Recent 
tsunami has also created a plenty of mosquito breeding 
grounds in the rainfall-filled containers and blocked drainages in 
the rubbles in the affected areas. 

First known reported case of dengue virus in Sri Lanka goes 
back to the middle of the last century.  The presence of virus 
was serologically confirmed in 1962 (Kulatilake and Jayakuru, 
1998). Both Aedes aegypti and Aedes Albopictus which are 
common dengue transmitting vectors are also found in Sri 
Lanka (Jatanasen, 1993). Before 1989, dengue hemorrhagic 
fever (DHF) was common in Southeast Asia but rare in the 
Indian subcontinent, particularly in Sri Lanka. The situation had 
changed by the end of 1980s with the reporting of 200 cases of 
DHF around greater Colombo area (Messer et al., 2002).  
There was a sharp increase of dengue cases since 1990s, with 
656 cases in 1992 and 15933 in 2005 (Quarterly Reports, 
Ministry of Health, Sri Lanka, 2006).  

Dengue incidence pattern in Sri Lanka is appeared to be closely 
related to population increase. Earlier, the disease was mainly 
restricted to urban and semi-urban areas of the country. 
However, over the years dengue is spreading to rural areas, 
may be due to population movement through transport 
development, economic activities and the changes in climatic 
factors. Recent outbreaks of dengue have concerned the 
authorities to act by collecting comprehensive epidemiological 
data and developing control strategies (Epidemiological Unit, 
2005). 

Currently both dengue fever (DF) and dengue hemorrhagic 
fever (DHF) are endemic in Sri Lanka.  As no immunization 
against dengue virus has been developed, vector control has 
been identified as the best approach to address the problem 
(Weekly Reports, Epidemiological Unit, 2005).  A national 
Dengue Control Program was setup at provincial and district 

levels in 1998. Training in clinical management, surveillance 
and diagnoses were emphasized to reduce morbidity and 
mortality due to DF and DHF. The control strategies introduced 
to include: 1) Surveillance: (a) Disease surveillance; (b) Vector 
surveillance; and (c) Laboratory active surveillance; 2) Vector 
control; 3) Social mobilization; 4) Clinical management of 
DF/DHF cases, and 5) Emergency response. To coordinate all 
these activities, a dengue task force has been established at 
the national level (Weekly Health Bulletin, Ministry of Health, 
2002). 

Even though there have been a wealth of information on 
malaria in Sri Lanka, there is only a handful of studies 
conducted on dengue. The published studies were mainly 
limited to examining clinical and epidemiological characteristics 
of dengue and dengue transmission (Jatanasen, 1993; 
Kularatne et al., 2005; Kulatilaka and Jayakuru, 1998; Messser 
et al., 2002). There were no known studies that have used 
spatial statistics, GIS and remote sensing which can be applied 
to understanding the spatial patterns of dengue transmission 
incidents and to evaluate statistical models for prediction of 
dengue outbreaks.  

GEOGRAPHICAL INFORMATION SYSTEMS AND RISK 
MAPPING 

Spread of many diseases within a population characterises a 
spatial component. Spatial analysis tools such as GIS and 
spatial statistics enable epidemiologists to address the spatial 
distribution and to predict the outbreaks of diseases more 
accurately (Chaput et al., 2002). Recently, there has been a 
keen interest in mapping vector-borne diseases such as malaria 
and dengue using GIS and remote sensing techniques 
(Arlinghaus, 1996; Brooker et al., 2004; Carbajo et al., 2001; 
Connor et al., 1998; Jones et al., 2003; Kolivras, 2006; Liu et 
al., 2003; Martin et al., 2002; Ross, 2003). Such maps would 
make it possible to plan control measures in high-risk areas and 
greatly increase the cost efficiency of these control programs. 
These spatial information techniques can be effective tools in 
dengue monitoring and surveillance contributing to fill the gaps 
in the current understanding of disease distribution. In this 
research, GIS and remote sensing techniques are used to map 
the spatial distribution of dengue incidence and potential risk 
areas. Dengue risk mapping in this work involves analysis of 
dengue incidences, population at risk (under 18 years) and their 
relationships to particular geographical environments.   

METHODS 
 
STUDY AREA 

Sri Lanka is primarily a tropical country with high humidity and 
warm temperature through out the year. Sri Lanka gets rainfall 
mainly from two rainy seasons:  southwest Monsoon (May to 
August) and northeast Monsoon (November to February). 
Spatial variation of rainfall is high from southwest (wet zone) to 
southeast and to northeast (dry zone). In the wet zone, annual  
rainfall varies  between 2540 mm to over 5080 mm while in the 
northeast and southeast, it comes below 1250 mm. Nearly one 
quarter of the island is in the “Wet Zone” which includes the 
densely populated western province.  The mean temperature 
ranges from a low of 15.8° C in Nuwara Eliya in the Central 
Highlands to a high of 29° C in Trincomalee on the northeast 
coast (where temperature may reach 37° C). The average 
yearly temperature for the country ranges between 26° C to 28° 
C and the day and night temperatures may vary by 4° C to 7° 
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C.  Most of the island's surface consists of plains between 30 
and 200 meters above sea level. In the southwest, ridges and 
valleys rise gradually to merge with the Central Highlands, 
giving a dissected appearance to the plain. A coastal belt is 
about thirty meters above sea level surrounding the island. 
Much of the coast consists of scenic sandy beaches indented 
by coastal lagoons. 

The study was conducted in the western province of Sri Lanka 
where there is a marked increase of dengue cases evidenced 
during the last few years (Table 1).  Western province is the 
most urbanized and densely populated region of Sri Lanka and 
has a number of urban centres including Colombo, the capital 
(Figure 1). The numbers of dengue cases were determined as 
the infected patients sought treatment at government and 
private medical facilities in these districts. 

.   

 

 
Table 1: Dengue Transmission Incidents in the Western Province of Sri Lanka 
 

 
 

 

 
Source: Epidemiological Unit, Ministry of Health, Colombo, Sri Lanka 

 
 

Districts 2000 2001 2002 2003 2004 

Gampaha 1005 1310 1466 828 3030 

Colombo 1255 1470 1915 989 3434 

Kalutara 143 203 592 287 1178 

 
Figure 1: Study Area: Western Province of Sri Lanka 

 
 

 

DATA 

Collection of Ae. aegypti data, population and environmental 
data were carried out in December 2004 and 2005 during first 
author’s visits to the study area. Weekly dengue fever and DHF 
data for divisional sections of the 3 districts in the western 
province were collected from the Epidemiology Unit, Colombo. 
In addition, the Island wide dengue transmission data were 
obtained from the Weekly and Quarterly Epidemiological 
Reports of the Epidemiology Unit, Ministry of Health, Sri Lanka. 

Daily rainfall and temperature data were acquired from the 
Department of Meteorology, Colombo. Population data and 
demographic characteristics were obtained from the Census 
Department, Colombo, Sri Lanka.  

 

 

 

MAPPING SPATIAL DISTRIBUTIONS 

Mapping spatial distribution of dengue cases and potential risk 
areas requires converting points into surfaces. The inverse 
distance weighted (IDW) interpolation techniques is commonly 
used in GIS programs for producing surfaces using interpolation 
of scatter points such as rainfall point data and dengue 
transmission incidents. The technique is based on the 
assumption that the interpolating surface should be influenced 
mostly by the nearby points and less by the more distant points 
(Fisher et al., 1987). The interpolated surface is a weighted 
average of the scatter points and has commonly been applied 
to climate data (Legates and Willmott, 1990; Woodruff et al., 
2006).  In this research, the simplest form of inverse distance 
weighted interpolation (Shepard’s method) is used to produce 
surfaces from rainfall and dengue cases. The interpolated 
values at point (x, y), are 
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(power parameter) and hi is the distance from the scatter point 
to the interpolation point.  

To produce spatial distribution of dengue cases in the western 
province, Geographical Information Systems (GIS) techniques 
were used to register the maps of dengue incidence with 
topographical information at divisional administrative unit level. 
Rainfall and dengue data interpolations were carried out using 
IDW technique in ArcView/ArcGIS. 

ASSOCIATION BETWEEN RAINFALL AND DENGUE 
INCIDENCE 

A relation between the rainfall and disease outbreaks is long 
being suspected (Curriero et al., 2001; Rose et al., 2000; 
Thammapalo et al., 2005). In this research, a mathematical 
model has been established to ascertain either rainfall or 
disease outbreak in terms of other available data to predict the 
possible future scenarios from the model. Other parameters 
that could possibly hinder this model have also been 
investigated.  
 
First, the weekly (52 weeks) rainfall and disease data for all 
district sites including Colombo, Sri Lanka for years from 2000 
to 2004 has been averaged out. The data for all districts have 
been statistically analysed to obtain regression models for the 
data. The data obtained for Colombo, Sri Lanka has been used 
in the model development as it has the highest number and a 
rate of increase of dengue cases over the study period.  

Urban population, demographic characteristics, dengue 
incidences and land cover/land use data were used to produce 
potential dengue risk maps. Land cover/land use data have 
been derived from Landsat 7 ETM satellite data using the 
maximum likelihood supervised classification technique. All 
satellite data sets were geometrically corrected and registered 
to other GIS data layers.  

The weekly averages of dengue and rainfall data have been 
plotted. Figure 2 shows the line graph obtained for these two 
averages. 

The patterns of annual average rainfall reported for 52 weeks 
were nearly periodic and compared closely with the periodicity 
of disease outbreaks. As far as rainfall is concerned, there 
seems to be a tremendous fluctuation of weekly rainfall data. 
The data needs to be graduated (smoothened) for further 
analysis. There are various forms of graduations available for 
seasonal data (London, 1985). First, let D and R be disease 
outbreak and rainfall data, respectively. The two consecutive 
weekly rainfall data obtained for each district has been 
averaged out three times repeatedly, that is, 
 ( ) ( )
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As a result, we lost some weekly data from the beginning of the 
data set, thus resulting in a shifted feature of data as reflected 
from its line graph. Finally, they were inversely rescaled using 
the averages of these data sets, that is, 
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This produces the line graph in Figure 3. The purpose of 
Figures 2 and 3 is to see whether there is any periodic pattern 
as to the rainfall and disease outbreak for ongoing analysis. 
They were helpful in the determination of the regression model. 

 

 
Figure 2:  Five Year Averages of Weekly Disease Outbreaks and 
Dengue Data. 
 

5-Year Averages: Disease Outbreak Vs. Rainfall 
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Figure 3: Graduated Inversely Related Scaled Rainfall and Disease 
Outbreaks. 
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Figure 3 shows that the graduated rainfall data with the 
appropriate shift maintains nearly equal periodicity as that of the 
outbreak. Therefore, with the appropriate shift, the graduated 
rainfall data can be used to predict the disease outbreak 
suggesting that there is an inverse relationship among weekly 
rainfall and disease outbreak obtained in Colombo, Sri Lanka 
according to the 2000-2004 data available. This paves the way 
to realize that there might be some inverse proportionality 
among the appropriate variables; one includes either difference 
or quotient of variables. Borrowing the proceeding remark, we 
compute the quotient of disease outbreak/rainfall to plot it 
against the corresponding rainfall. The scatter plot in Figure 4 
provides evidence for a power model with a strong power 
correlation coefficient. 
 
Let x be the quotient of disease outbreak and rainfall and let y 
be the rainfall. Then, according to this power model,  

Rainfall = 13.588× (Disease/Rainfall)
5018.0−

 
 
thus, leading to an expression for a number of disease outbreak 
in terms of rainfall. In other words, the number of outbreak can 
be computed from average rainfall and vice versa. The 
correlation coefficient for this proposed power model regression 

analysis is very high giving a strong correlation of the quantities 
involved (r2 = 0.6362, or r = 0.7976). 
  
A mathematical model for weekly rainfall vs. dengue disease 
outbreaks in Colombo, Sri Lanka needs to be determined. From 
this model, we have 

( )
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−

=  

{ }log log(13 .588) 0 .5018 log logR D R= − −

log log(13.588) 0.5018log 0.5018 logR D R= − +  

(1 0.5018) log log(13.588) 0.5018 logR D− = −

{ }( 1 / 0 . 4 9 8 2 ) l o g ( 1 3 . 5 8 8 ) 0 . 5 0 1 8 l o g D
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−
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 1 .0 0 7 21 8 8 .1 4 7 9 .R D −
=  

 
This provides an estimate for rainfall in terms of number of 
outbreaks. Similarly, a formula can be derived to find a number 
of outbreaks from rainfall in a given week or month. That is,  

{ }( 1 / 0 .5 0 1 8 ) lo g (1 3 .5 8 8 ) 0 .4 9 8 2 lo g R
D e

−
= , or 

0 .9 9 2 81 8 1 .2 0 9 8 .D R −
=  

 
This study also helps to estimate the dengue outbreaks over an 
extended period. However, continuous revision of the model 
can be sought periodically.  
 

 

 
Figure 4: Quotient of Disease Outbreaks and Rainfall 
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RESULTS 
 
A set of selected weekly rainfall data has been used to 
determine the number of outbreaks from the power model using 
the rainfall data reported from Colombo, Sri Lanka. They are 
compared with the actual number of outbreaks to determine the 
validity of the model. The error in all of these cases is less than 
a single outbreak as obtained in Table 2. Some rainfall data 
obviously do not agree with this model. The factors such as a 
large family environment, poverty, a lack of proper preventive 

care facilities, difficulty to diagnose the disease in time, unsafe 
drinking water, a lack of proper sanitation conditions and other 
situations similar to the above certainly affect this model 
causing disagreement between rainfall and the model. 
 
Similar analyses have also been carried out for other towns, 
namely, Gampaha, Moratuwa, Horana, Kalutara, and 
Bandaragama. Their statistical findings are as appear in Table 
3. From Table 3 we conclude that the power model regression 
analysis is the best suited for the models dealing with the 
weekly rainfall and disease outbreak data. 

 

 
Table 2:  Number of Observed Outbreaks versus Predicted Outbreaks  
 

Week Number of outbreaks Number of outbreaks predicted from the model 

4 8.6 7.8 
6 5.6 5.6 
9 6.6 6.7 
11 7.4 7.1 
40 2.4 2.6 
41 3.4 3.9 
42 1.6 2.0 
47 7.0 6.7 
52 4.4 4.0 
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.

 

 
Table 3:  Results of the Power Model for Selected Towns 
 

Towns Proposed regression model for the data Proposed model equation Coefficient of Determination (r2)  
(Correlation Coefficient r) 

Gampaha Power Model 4788.0)/(6265.7 −
= RDR  or  

4788.13780.0 RD =  

0.5499 (r = 0.7416) 

Colombo Power Model 5018.0)/(5880.13 −
= RDR  or 

5018.1
2700.0 RD =  

0.6362 (r = 0.7976) 

Moratuwa Power Model 5067.0
)/(3121.8

−
= RDR  or 

5067.1
3420.0 RD =  

0.7718 (r= 0.8785) 

Horana Unable to obtain linear, logarithmic, polynomial of 
degree 2-6, power, or moving average model for the 
data 

/ / 

Kalutara Exponential Model )/(346.17633.64 RDeR −
=  or 

{ })ln(0577.02403.0 RRD −=  
0.5325 (r = 0.7297) 

Bandaragama Unable to obtain linear, logarithmic, polynomial of 
degree 2-6, power, or moving average model for the 
data 

/ / 

 
 

 
 

The correlation coefficients (r) for these proposed power model 
regression analyses for Gampaha, Colombo, Moratuwa, and 
Kalutara are very high giving a strong power correlation of the 
quantities involved. Note that in the case of Kalutara, an 
exponential model is suggested and for Horana and 
Bandaragama, we were unable to obtain linear, logarithmic, 
polynomial of degree 2-6, power, or moving average model for 
the data.  

 
 
Similar line graph as appeared in Figure 2 has been obtained 
(Amarakoon et al., 2004) for Caribbean countries. It found a 
well defined seasonality in the epidemics and concludes that 
warmer temperatures and less abundance of rainfall appeared 
to be influencing the epidemics. This study also showed that 
high dengue incidence is normally associated with the areas 
with less abundance of rainfall (Figure 5). 

 
 

 
Figure 5: Spatial Distribution of Rainfall and Dengue Incidence: Western Province 
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Dengue incidence surface maps produced using the IDW 
interpolation technique shows a number of dengue clusters in 
the western province over the five-year period.  Both dengue 
and dengue hemorrhagic fever incidence are commonly found 
among younger population, generally less than 19 years old. 
Statistical analysis can be done to show that there is a strong 

positive correlation between dengue incidence and younger 
population under 18 years.  
 
The high risk age category was superimposed over the spatial 
distributions of dengue incidence to show that the distribution of 
population clusters are closely associated with dengue 
incidence clusters (Figure 6).  

 

 
Figure 6:  Spatial Distribution of Dengue Transmission Risk 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
DISCUSSION 
 
This study found that temporal distribution of dengue cases was 
closely associated with the post rainfall period. The relationship 
was statistically supported by the power regression model 
established in this study indicating that there is a strong 
statistical association between dengue and rainfall. Dengue 
incidences were relatively low during the heavy rainfall and 
increase when the rainfall started to decrease, showing that 
about three to four weeks lag time between the rainfall and 
dengue outbreaks. The outbreaks predicted by the model were 
clearly related to the actual outbreaks indicating its ability to 
predict potential outbreaks. The applicability of the model can 
be further tested with other vector-borne diseases such as 
malaria and Ross River Fever at different geographical regions 
in other countries.  
 
The production of the dengue risk map in this study used the 
spatial distribution of dengue incidence, rainfall and the high 
risk population category. The spatial distribution of dengue risk 
shows that dengue incidence is clustered in the north western 
part of the western province of Sri Lanka, mainly around the 
urbanized western coastal region of the province (Figure 6). 
Temperature and relative humidity have been reported as the 
other major and important climatic factors, which could alone or 
collectively be responsible for an outbreak (Chakravarti and 
Kumaria, 2005). However, they were not considered in this 
study as there have been no significant variations found in the 
study area.  
 
The advantage of using GIS based methodology is its ability to 
incorporate diverse data and integrate expert knowledge using 
statistical techniques such as multi-criteria analysis. Using the 
GIS-based methodology, the future work can be undertaken to 

examine the impact of urbanization, climate variability on the 
changes of mosquito habitats incorporating remote sensing and 
climatic phenomena such as El Niňo/La Niňa data. More 
studies in this regard could perhaps reveal the strong 
correlation between the climatic changes and dengue 
outbreaks, which would help in making the strategic planning  to 
forecast more accurately any outbreak and to deal with any 
outbreaks in future well in advance. 
 
CONCLUSIONS 
 
This study identified and mapped spatial distribution of dengue 
incidence, potential dengue risk based on dengue incidence, 
land use, high risk population age groups, and developed a 
model to predict dengue outbreaks analysing the association 
between rainfall and dengue outbreaks. The methodology 
developed using GIS, spatial statistics and power regression 
models have improved the understanding of disease outbreak 
patterns and its association with climatic changes. We found a 
temporal and spatial correlation between post rainfall seasons 
and dengue disease outbreaks for the western province of Sri 
Lanka based on analysis of climate, population and 
epidemiology data obtained for the 2000-2004 period. A power 
regression model was constructed to assess the quantitative 
statistical relationships between rainfall and dengue 
transmission. At major urban centres (e.g., Colombo, 
Gampaha, Moratuwa and Kalutara), the power regression 
model has closely predicted disease outbreaks using the data. 
Understanding the spatial and temporal patterns of climate and 
its impact on human health, particularly outbreaks of vector-
borne diseases such as dengue is important in controlling the 
transmissions of the disease and treat infected population. 
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